

VAS Objects - A Toolbox for (dynamic) convolution-based Applications for Pure
Data and Max/MSP

Hannes Barfuss1, Thomas Resch2
1 Forschung & Entwicklung, Hochschule für Musik Basel FHNW, E-Mail: hannes.barfuss@fhnw.ch
2 Forschung & Entwicklung, Hochschule für Musik Basel FHNW, E-Mail: thomas.resch@fhnw.ch

Abstract
The Virtual Acoustic Spaces (VAS) objects are a set of
externals for Max/MSP (Max) and Pure Data (Pd) for
(dynamic) convolution-based applications. While
numerous objects already exist for static convolution for Max
as well as for Pd, no object library available to date works
with both applications while capable of handling up-to-date
file formats (such as sofa), providing dynamic convolution
with filters exchangeable in real-time, and being published as
open-source software. Besides partitioned, multi-threaded
convolution with static filters, the objects facilitate crossfade-
based swapping between current and target filter (for
applications such as dynamic binaural synthesis) as well as
a true polyphonic dynamic convolution in which the
respective filters may decay to the end. As the filter length is
not limited, binaural synthesis based on binaural room
impulse responses (BRIRs) is also possible.

Introduction
The objects are implemented with the VAS Library [1], a
cross-platform, open-source C library for the development of
convolution-based real-time applications. The library itself is
written in plain C and therefore should compile on all
operating systems and hardware platforms. In the initial
stages of development, the focus was on the realisation of
personal projects. Meanwhile it is explicitly intended as a tool
for the community for realising media installations, Extended
Reality (XR) applications and listening tests. Initially, three
objects were developed for Pd only: A simple dynamic
binaural synthesis, a uniformly partitioned convolution for
reverberation and an object for headphone equalisation. These
objects were originally programmed and used for the H.E.I.
Guide, an interactive soundwalk taking place in Basel,
Switzerland [2]. The soundwalk is based on the RWA - Real
World Audio [3] software, which itself uses libPd [4] as its
audio backend. Over the years, the VAS library has been
extended to feature numerous new classes, functions, and
application examples: A Unity plugin for dynamic binaural
synthesis [5] based on binaural room impulse responses
(BRIRs) was used in several XR projects, for example in [6]
[7]. An object for dynamic convolution was added for the
project "Authenticity in Music Production" [8]. And due to
the wide use and the comfortable user interface, most objects
have now also been adapted for Max/MSP.

This paper starts with a brief discussion of related work in
section 2 and goes on to discuss implementation details
considered by the authors to be of particular interest (section

3). Section 4 explains the objects and their usage. Some
performance measurements have been carried out and are
reviewed in section 5. Finally, section 6 gives an outlook on
further development perspectives, possible additions, and
optimisations.

Related Work
Several libraries and objects for Pd and Max exist for the
realisation of convolution-based applications. The
Soundscape Renderer (SSR) [9] is a C++ software capable of
rendering dynamic binaural synthesis and other spatial audio
formats such as wave field synthesis and Ambisonics. Besides
source code and a stand-alone version, the authors also
provide objects for Pd. The HISS tools are a set of objects for
convolution-based applications for Max [10]. The focus of
these objects is on reverberation and measurement of impulse
responses rather than spatial audio synthesis. The earplug~
object is a binaural renderer for Pd using the KEMAR HRTF
measurements [11]. The recently released SOFAlizer for Pd
[12] is based on earplug~ but supports the SOFA format and
therefore the usage of different head related transfer functions
(HRTFs). Another object for Pd, Space~ implements a
generalised real time model for spatial processing [13].

Implementation Details
Reverberation
For reverberation, the library supports a single-threaded equal
and a multithreaded non-equal partitioned approach.
Although parallel processing with growing partition sizes is
usually significantly faster, there are special cases, for
instance that described in [1], where equal partitioning can be
more efficient. In other cases, hardware or software
constraints might not permit multithreading at all. Therefore,
the VAS Objects make both variants available to the user
(vas_reverb~ and vas_partreverb~). The partition scheme for
the non-equal version is close to Gardner’s version as
described in [14] (figure 5). Instead of starting with a slightly
longer direct form convolution in the beginning and then
doubling segment sizes every two frames for the frequency
domain convolution, however, the VAS partition scheme
starts with eight small segments of the same size at the
beginning, as shown below, in figure 1.

Figure 1: Partition scheme of the non-equal partitioned
convolution.

Dynamic convolution
The necessary dynamic filter exchange for the dynamic
convolution objects (vas_binaural~ and vas_dynconv~) is
realised by calculating the convolution with both the current
and the target IR simultaneously for at least one frame. An
equal power crossfade is used for mixing the two signals.

Besides its application in binaural synthesis, dynamic
convolution can be used for modelling analog hardware, such
as guitar effect pedals or amplifiers. Static convolution with a
user-settable impulse response has already been present in
consumer products for some time, such as in the Helix guitar
processor [15]. Since the impulse response cannot be
exchanged on the fly, the possibilities remain quite limited
and focus on emulating systems and devices whose impulse
response does not change in real-time, such as guitar/bass
cabinets [16] or the resonance chambers of acoustic guitars
[17]. With vas_dynconv~, we present an easily configurable
way to model (parts of) audio effect processor hardware with
dynamic convolution. The following example illustrates one
of the intended application scenarios for the vas_dynconv~
object.

Convolution can only reproduce the linear effects of a system.
However, the vas_dynconv~ object can also be useful as a
component in the emulation of non-linear systems. In a
research project on preserving digital hardware [18], we
emulated the Princeton PT2399 delay circuit [19], which is
frequently used in effect floor pedals for guitar players. The
PT2399 can be driven into instability and self-oscillation by
increasing the gain of the signal fed back into the delay line.
The resulting (highly non-linear) distortion as well as the
potentially endless repetitions of the delay render a purely
convolutional emulation of the PT2399 impossible. However,
the sonic character of the non-linearities in the PT2399 is to a
great extent due to its far-from-flat frequency response. The
circuit contains a resonant filter with a variable cut-off
frequency. By sampling the impulse response of this filter
several times with different settings and crossfading between
them with vas_dynconv~, we were able to approximate the
sonic character of the PT2399. The delay was implemented
with a simple ring-buffer and the vas_dynconv~ object was
placed inside the delay feedback loop. In a series of informal
blind listening tests, this hybrid emulation was in general
considered “similar” or “very similar” to the original
hardware. Since the PT2399’s filter is rather subtle, we used
only 4 impulse responses, but the vas_dynconv~ object can
handle IR sets of up to 360 IRs.

Usage
All convolution-based VAS-objects take the partition size as
the first (optional) argument (default value is 256 samples). If
it is set equal to the DSP block size, no additional latency is
introduced. A larger number increases latency but decreases
CPU load. Audio signals are always routed into the first inlet.

vas_binaural~
Impulse response (IR) sets (either in SOFA format or in a
proprietary text format) can be passed as a second argument

or loaded after object creation with the read message. The first
argument of the read message is the IR set to be loaded. The
other arguments are optional and are used to set the partition
size, the offset for the IR set (in samples) and the end of the
IR set (in samples). The length of the transform functions is
not limited. Therefore, it is also possible to load longer BRIR
sets. The two additional inlets expect azimuth and elevation
which can alternatively set by messages. A usage example can
be found in the help patch which is available both for Pd (as
depicted in Figure 1) and Max.

Figure 2: A Pd Example of the vas_binaural~ Object.

vas_reverb~ & vas_partconv~

The objects calculate a mono to stereo convolution. IRs can
be passed as an optional argument or can be loaded with the
read message as described above for the vas_binaural~
object. In addition, both objects support loading impulse
responses with the set message from Pd arrays (in the case of
Max from buffer~ objects) as shown in figure 2 below.

Figure 3: Loading IRs from Pd arrays.

vas_hpcomp~
As the headphone transfer function (HpTF) may strongly
colorize a binaural signal [20], the VAS library provides a
specific tool (vas_hpcomp~) for headphone compensation.
The object performs a two-channel convolution.
Compensation filters can be loaded as SOFA files, proprietary
text files or from Pd arrays (Max buffers) as described above.

vas_dynconv~
The vas_dynconv~ object takes the partition size to be used
for convolution as (optional) creation argument. IRs are
expected to be loaded into array objects.

The configure message takes three arguments. The first one is
the partition size, the second one is the maximum filter length
(in samples) and the third one is the number of IRs to load.

It is possible to load an IR set that contains fewer IRs than are
specified using the configure message. In this case, a
setandinterpolate message should be sent, followed by the
array names and their desired corresponding indices in pairs.
In between those indices, IRs are calculated with linear
interpolation. This can be useful for filter sets that would
otherwise not be high-resolution enough to allow for smooth
crossfading. By sending an index message followed by an
integer, the vas_dynconv~ object executes a filter exchange
and cross-fade from the current IR to the IR at the specified
index.

Additional help and a simple hands-on example can be found
in the help patch which is available both for Pd and Max.

Performance
vas_binaural~
Within the scope of the Immersive Audio Guiding System
(IAGS) research project [21], a Unity Audio Plugin was
derived from the vas_binaural~ object. The performance of
this plugin has been tested against Resonance Audio Renderer
[22] within the Unity game engine. For the test, a simple 3D
scene was set up in Unity and deployed to various mobile
devices. The number of rendered binaural sources was
constantly increased to determine the maximum number of
sources that could be rendered simultaneously without
dropouts or other audio glitches. This test was executed both
with Resonance Audio Renderer and the VAS Library. As all
test devices have multi-core CPUs. The multi-threaded
version of the VAS binaural engine was used for testing. In
addition to the convolution engine, the VAS Library uses
multiple filters per source to calculate material absorption and
other room characteristics. Resonance Audio Renderer uses a
signficantly different room acoustics model than VAS Library
(for details, consult Resonance Audio’s source code [23]).
This should be considered when interpreting the performance
test results in Figure 4.

Figure 4: Performance Test Results of VAS Library and
Resonance Audio Renderer.

The results show that on iOS, Resonance Audio Renderer can
calculate more sources than the VAS Library. However, on

Android, the VAS Library outperforms Resonance Audio.
The results also show an overall gap between iOS devices and
Android devices with comparable hardware, both with
Resonance Audio and with VAS Library. The reason for the
relatively poor performance of Android devices is not yet
entirely clear. OS-dependent differences in Unity’s audio
engine implementation or between the low-level Audio APIs
of the two operating systems (CoreAudio on iOS vs. AAudio
or OpenSL on Android) could be responsible. Since fast
fourier transforms (FFT) account for a relatively large part of
the overall calculations, performance differences between the
FFT algorithms used could also significantly affect the overall
performance.

vas_dynconv~
In the case of vas_dynconv~, we used a Raspberry Pi 4
(Model B) to calculate dynamic convolution with 4 impulse
responses of 512 samples length each, with a partition size of
32 for minimum latency (< 1ms). No glitches, dropouts or
other artefacts were encountered. This shows that the
vas_dynconv~ object is suitable for emulating effect
processor foot pedals since it can satisfy both low latency and
low space requirements. However, no formal performance
tests have been carried out with the vas_dynconv~ object yet,
and the described usage example is far from exhausting the
CPU resources of the Raspberry Pi.

Conclusion and Outlook
Four Max and Pd externals for convolution-based
applications have been presented. So far, room acoustics can
only be modelled by using a set of BRIRs. However, the Unity
Plugin developed for the IAGS research project already
contains a room acoustics model that can calculate up to 1’000
binaural early reflections in real-time. The reflection
parameters such as position, delay or material absorption
filtering are automatically calculated based on the position of
the listener and the surrounding walls. This room acoustics
model will soon be added to VAS Library.

Further research is needed to examine the potential of
dynamic convolution for the modelling of audio effect
processors and/or the preservation of such devices once their
original electric components become unavailable. There are
several approaches for convolutional modelling of such
devices. First, a purely convolutional approach can be chosen
for linear systems. However, real-world audio effect
processors are rarely linear systems. Second, Volterra kernels
can be used to describe and simulate a weakly non-linear
system [24, 25, 26]. Third, this paper presented a hybrid
approach that splits a system into its linear and non-linear
components. The linear components are then reproduced with
dynamic convolution, while the non-linear components are
approximated algorithmically. This approach could be refined
in several ways. For example, the system’s impulse response
could be observed with different input signal levels.

!

References
[1] Resch, T., Böhm, C., Weinzierl, S.: VAS – A cross

platform C-library for efficient dynamic binaural
synthesis on mobile devices. AES, International
Conference on Headphone Technology, San Francisco,
(2019).

[2] Hauert, S.: H.E.I. Guide, URL:
https://heiguide.ch/

[3] Resch, T., “RWA – A Game Engine for Real World
Audio Games”, in Proceedings of the International
Conference on New Interfaces for Musical Expression,
Baton Rouge, (2015).

[4] Brinkmann, P., Kirn, P., Lawler, R., McCormick, C.,
Roth, M., & Steiner, H. C.: Embedding pure data with
libpd. In Proceedings of the Pure Data Convention, Vol.
291, (2011).

[5] Resch ,T., Hädrich, M. “The Virtual Acoustic Spaces
Unity Spatializer with custom head tracker” in
Proceedings of the 5th International Conference on
Spatial Audio ICSA, Ilmenau, (2019).

[6] Böhm C.,Schäfer U., „Analog Speicher,“ URL:
https://www.analogspeicher.org,/

[7] Droste, M., Letellier, J., Böhm, C., Resch, T.:
Combining High-Fidelity Visuals and Spatial Acoustics
in Virtual Reality – Auralization of a Virtual String
Quartet. Kultur und Informatik - Extended Reality,
(2020), 179-192.

[8] Authenticity in Music Production Homepage, URL:
https://www.fhnw.ch/de/forschung-und-
dienstleistungen/musik/hochschule-fuer-
musik/projekte/authenticity-in-music-
production/

[9] Geier M., Ahrens J., Spors S.: The SoundScape
Renderer, A unified spatial audio reproduction
framework for arbitrary rendering methods, in 124th
AES Convention, Amsterdam, (2008).

[10] Harker, A., Tremblay, P.A.: The HISS Tools Impulse
Response Toolbox: Convolution for the Masses. ICMC
2012: Non-cochlear Sound. The International Computer
Music Association, (2012), 148-155.

[11] Xiang P.: Git Repository earplug~, URL:

https://github.com/pd-externals/earplug/

[12] Git Repository SOFALizer-for-pd, URL:

https://github.com/sofacoustics/SOFAlizer
-for-pd/

[13] Yadegari, S., Moore, F., Castle, H., Burr, A., Apel, T.:

Real-Time Implementation of a General Model for
Spatial Processing of Sounds, (2002).

[14] Gardner: W.: Efficient Convolution without
Input/Output Delay. J. Audio Eng. Soc., vol. 43, no. 3,
(1995), 127-136.

[15] Line6 Helix, URL:

https://line6.com/helix/resources.html

[16] Line6 Resources, URL: https://l6c-

acdn2.line6.net/data/6/0a020a3e357b58ff87
bad59f0/application/pdf/helix-blog-what-
is-an-ir.pdf

[17] NUX Optima Air, URL:

https://www.nuxefx.com/optima-air.html

[18] Authenticity in Music Production, URL:

https://www.fhnw.ch/en/about-
fhnw/schools/school-of-
engineering/institutes/research-
projects/authenticity-in-music

[19] Princeton PT2399 Echo Processor, URL:

http://www.princeton.com.tw/en-
us/products/multimediaaudioic/echoprocess
or.aspx

[20] Lindau, A., Brinkmann, F.: Perceptual evaluation of

individual headphone compensation in binaural
synthesis based on non-individual recordings. Journal
of the Audio Engineering Society 60, (2012), 54-62.

[21] Immersive Audio Guiding System Homepage, URL:

https://www.fhnw.ch/de/forschung-und-
dienstleistungen/musik/hochschule-fuer-
musik/projekte/immersive-audio-guiding-
system-iags

[22] Resonance Audio: Unity, URL:

https://resonance-
audio.github.io/resonance-
audio/develop/unity/getting-started.html

[23] Resonance Audio, URL:

https://github.com/resonance-
audio/resonance-audio

[24] Farina, A., Bellini, A., Armelloni, E.: Non-Linear

Convolution: A New Approach for the Auralization of
Distorting Systems. 110th AES Convention,
Amsterdam, (2001).

[25] Reed, M., Hawksford, M.J.: Practical modelling of

nonlinear audio systems using the Volterra series. 100th
AES Convention, Copenhagen, (1996).

[26] Hélie, T.: On the Use of Volterra Series for Real-time

Simulations of Weakly Nonlinear Analog Audio
Devices: Application to the Moog Ladder Filter. 9th
Conference on Digital Audio Effects, Montral, (2006).

