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Abstract 
The Virtual Acoustic Spaces (VAS) objects are a set of 
externals for Max/MSP (Max) and Pure Data (Pd) for 
(dynamic) convolution-based applications. While 
numerous objects already exist for static convolution for Max 
as well as for Pd, no object library available to date works 
with both applications while capable of handling up-to-date 
file formats (such as sofa), providing dynamic convolution 
with filters exchangeable in real-time, and being published as 
open-source software. Besides partitioned, multi-threaded 
convolution with static filters, the objects facilitate crossfade-
based swapping between current and target filter (for 
applications such as dynamic binaural synthesis) as well as 
a true polyphonic dynamic convolution in which the 
respective filters may decay to the end. As the filter length is 
not limited, binaural synthesis based on binaural room 
impulse responses (BRIRs) is also possible.  

Introduction 
The objects are implemented with the VAS Library [1], a 
cross-platform, open-source C library for the development of 
convolution-based real-time applications. The library itself is 
written in plain C and therefore should compile on all 
operating systems and hardware platforms. In the initial 
stages of development, the focus was on the realisation of 
personal projects. Meanwhile it is explicitly intended as a tool 
for the community for realising media installations, Extended 
Reality (XR) applications and listening tests. Initially, three 
objects were developed for Pd only: A simple dynamic 
binaural synthesis, a uniformly partitioned convolution for 
reverberation and an object for headphone equalisation. These 
objects were originally programmed and used for the H.E.I. 
Guide, an interactive soundwalk taking place in Basel, 
Switzerland [2]. The soundwalk is based on the RWA - Real 
World Audio [3] software, which itself uses libPd [4] as its 
audio backend. Over the years, the VAS library has been 
extended to feature numerous new classes, functions, and 
application examples: A Unity plugin for dynamic binaural 
synthesis [5] based on binaural room impulse responses 
(BRIRs) was used in several XR projects, for example in [6] 
[7]. An object for dynamic convolution was added for the 
project "Authenticity in Music Production" [8]. And due to 
the wide use and the comfortable user interface, most objects 
have now also been adapted for Max/MSP.  

This paper starts with a brief discussion of related work in 
section 2 and goes on to discuss implementation details 
considered by the authors to be of particular interest (section 

3). Section 4 explains the objects and their usage. Some 
performance measurements have been carried out and are 
reviewed in section 5. Finally, section 6 gives an outlook on 
further development perspectives, possible additions, and 
optimisations. 

Related Work 
Several libraries and objects for Pd and Max exist for the 
realisation of convolution-based applications. The 
Soundscape Renderer (SSR) [9] is a C++ software capable of 
rendering dynamic binaural synthesis and other spatial audio 
formats such as wave field synthesis and Ambisonics. Besides 
source code and a stand-alone version, the authors also 
provide objects for Pd. The HISS tools are a set of objects for 
convolution-based applications for Max [10]. The focus of 
these objects is on reverberation and measurement of impulse 
responses rather than spatial audio synthesis. The earplug~ 
object is a binaural renderer for Pd using the KEMAR HRTF 
measurements [11]. The recently released SOFAlizer for Pd 
[12] is based on earplug~ but supports the SOFA format and 
therefore the usage of different head related transfer functions 
(HRTFs). Another object for Pd, Space~ implements a 
generalised real time model for spatial processing [13].  

Implementation Details 
Reverberation 
For reverberation, the library supports a single-threaded equal 
and a multithreaded non-equal partitioned approach. 
Although parallel processing with growing partition sizes is 
usually significantly faster, there are special cases, for 
instance that described in [1], where equal partitioning can be 
more efficient. In other cases, hardware or software 
constraints might not permit multithreading at all. Therefore, 
the VAS Objects make both variants available to the user 
(vas_reverb~ and vas_partreverb~). The partition scheme for 
the non-equal version is close to Gardner’s version as 
described in [14] (figure 5). Instead of starting with a slightly 
longer direct form convolution in the beginning and then 
doubling segment sizes every two frames for the frequency 
domain convolution, however, the VAS partition scheme 
starts with eight small segments of the same size at the 
beginning, as shown below, in figure 1.  

 
Figure 1: Partition scheme of the non-equal partitioned 
convolution. 



 

 

Dynamic convolution 
The necessary dynamic filter exchange for the dynamic 
convolution objects (vas_binaural~ and vas_dynconv~) is 
realised by calculating the convolution with both the current 
and the target IR simultaneously for at least one frame. An 
equal power crossfade is used for mixing the two signals.  

Besides its application in binaural synthesis, dynamic 
convolution can be used for modelling analog hardware, such 
as guitar effect pedals or amplifiers. Static convolution with a 
user-settable impulse response has already been present in 
consumer products for some time, such as in the Helix guitar 
processor [15]. Since the impulse response cannot be 
exchanged on the fly, the possibilities remain quite limited 
and focus on emulating systems and devices whose impulse 
response does not change in real-time, such as guitar/bass 
cabinets [16] or the resonance chambers of acoustic guitars 
[17]. With vas_dynconv~, we present an easily configurable 
way to model (parts of) audio effect processor hardware with 
dynamic convolution. The following example illustrates one 
of the intended application scenarios for the vas_dynconv~ 
object. 

Convolution can only reproduce the linear effects of a system. 
However, the vas_dynconv~ object can also be useful as a 
component in the emulation of non-linear systems. In a 
research project on preserving digital hardware [18], we 
emulated the Princeton PT2399 delay circuit [19], which is 
frequently used in effect floor pedals for guitar players. The 
PT2399 can be driven into instability and self-oscillation by 
increasing the gain of the signal fed back into the delay line. 
The resulting (highly non-linear) distortion as well as the 
potentially endless repetitions of the delay render a purely 
convolutional emulation of the PT2399 impossible. However, 
the sonic character of the non-linearities in the PT2399 is to a 
great extent due to its far-from-flat frequency response. The 
circuit contains a resonant filter with a variable cut-off 
frequency. By sampling the impulse response of this filter 
several times with different settings and crossfading between 
them with vas_dynconv~, we were able to approximate the 
sonic character of the PT2399. The delay was implemented 
with a simple ring-buffer and the vas_dynconv~ object was 
placed inside the delay feedback loop. In a series of informal 
blind listening tests, this hybrid emulation was in general 
considered “similar” or “very similar” to the original 
hardware. Since the PT2399’s filter is rather subtle, we used 
only 4 impulse responses, but the vas_dynconv~ object can 
handle IR sets of up to 360 IRs. 

Usage 
All convolution-based VAS-objects take the partition size as 
the first (optional) argument (default value is 256 samples). If 
it is set equal to the DSP block size, no additional latency is 
introduced. A larger number increases latency but decreases 
CPU load. Audio signals are always routed into the first inlet. 

vas_binaural~ 
Impulse response (IR) sets (either in SOFA format or in a 
proprietary text format) can be passed as a second argument 

or loaded after object creation with the read message. The first 
argument of the read message is the IR set to be loaded. The 
other arguments are optional and are used to set the partition 
size, the offset for the IR set (in samples) and the end of the 
IR set (in samples). The length of the transform functions is 
not limited. Therefore, it is also possible to load longer BRIR 
sets. The two additional inlets expect azimuth and elevation 
which can alternatively set by messages. A usage example can 
be found in the help patch which is available both for Pd (as 
depicted in Figure 1) and Max. 

 
Figure 2: A Pd Example of the vas_binaural~ Object. 

vas_reverb~ & vas_partconv~ 

The objects calculate a mono to stereo convolution. IRs can 
be passed as an optional argument or can be loaded with the 
read message as described above for the vas_binaural~ 
object. In addition, both objects support loading impulse 
responses with the set message from Pd arrays (in the case of 
Max from buffer~ objects) as shown in figure 2 below. 

 
Figure 3: Loading IRs from Pd arrays. 

vas_hpcomp~ 
As the headphone transfer function (HpTF) may strongly 
colorize a binaural signal [20], the VAS library provides a 
specific tool (vas_hpcomp~) for headphone compensation. 
The object performs a two-channel convolution. 
Compensation filters can be loaded as SOFA files, proprietary 
text files or from Pd arrays (Max buffers) as described above. 

vas_dynconv~ 
The vas_dynconv~ object takes the partition size to be used 
for convolution as (optional) creation argument. IRs are 
expected to be loaded into array objects. 



 

 

The configure message takes three arguments. The first one is 
the partition size, the second one is the maximum filter length 
(in samples) and the third one is the number of IRs to load. 

It is possible to load an IR set that contains fewer IRs than are 
specified using the configure message. In this case, a 
setandinterpolate message should be sent, followed by the 
array names and their desired corresponding indices in pairs. 
In between those indices, IRs are calculated with linear 
interpolation. This can be useful for filter sets that would 
otherwise not be high-resolution enough to allow for smooth 
crossfading. By sending an index message followed by an 
integer, the vas_dynconv~ object executes a filter exchange 
and cross-fade from the current IR to the IR at the specified 
index. 

Additional help and a simple hands-on example can be found 
in the help patch which is available both for Pd and Max. 

Performance  
vas_binaural~ 
Within the scope of the Immersive Audio Guiding System 
(IAGS) research project [21], a Unity Audio Plugin  was 
derived from the vas_binaural~ object. The performance of 
this plugin has been tested against Resonance Audio Renderer 
[22] within the Unity game engine. For the test, a simple 3D 
scene was set up in Unity and deployed to various mobile 
devices. The number of rendered binaural sources was 
constantly increased to determine the maximum number of 
sources that could be rendered simultaneously without 
dropouts or other audio glitches. This test was executed both 
with Resonance Audio Renderer and the VAS Library. As all 
test devices have multi-core CPUs. The multi-threaded 
version of the VAS binaural engine was used for testing. In 
addition to the convolution engine, the VAS Library uses 
multiple filters per source to calculate material absorption and 
other room characteristics. Resonance Audio Renderer uses a 
signficantly different room acoustics model than VAS Library 
(for details, consult Resonance Audio’s source code [23]). 
This should be considered when interpreting the performance 
test results in Figure 4. 

 
Figure 4: Performance Test Results of VAS Library and 
Resonance Audio Renderer. 

The results show that on iOS, Resonance Audio Renderer can 
calculate more sources than the VAS Library. However, on 

Android, the VAS Library outperforms Resonance Audio. 
The results also show an overall gap between iOS devices and 
Android devices with comparable hardware, both with 
Resonance Audio and with VAS Library. The reason for the 
relatively poor performance of Android devices is not yet 
entirely clear. OS-dependent differences in Unity’s audio 
engine implementation or between the low-level Audio APIs 
of the two operating systems (CoreAudio on iOS vs. AAudio 
or OpenSL on Android) could be responsible. Since fast 
fourier transforms (FFT) account for a relatively large part of 
the overall calculations, performance differences between the 
FFT algorithms used could also significantly affect the overall 
performance. 

vas_dynconv~ 
In the case of vas_dynconv~, we used a Raspberry Pi 4 
(Model B) to calculate dynamic convolution with 4 impulse 
responses of 512 samples length each, with a partition size of 
32 for minimum latency (< 1ms). No glitches, dropouts or 
other artefacts were encountered. This shows that the 
vas_dynconv~ object is suitable for emulating effect 
processor foot pedals since it can satisfy both low latency and 
low space requirements. However, no formal performance 
tests have been carried out with the vas_dynconv~ object yet, 
and the described usage example is far from exhausting the 
CPU resources of the Raspberry Pi. 

Conclusion and Outlook 
Four Max and Pd externals for convolution-based 
applications have been presented. So far, room acoustics can 
only be modelled by using a set of BRIRs. However, the Unity 
Plugin developed for the IAGS research project already 
contains a room acoustics model that can calculate up to 1’000 
binaural early reflections in real-time. The reflection 
parameters such as position, delay or material absorption 
filtering are automatically calculated based on the position of 
the listener and the surrounding walls. This room acoustics 
model will soon be added to VAS Library. 

Further research is needed to examine the potential of 
dynamic convolution for the modelling of audio effect 
processors and/or the preservation of such devices once their 
original electric components become unavailable. There are 
several approaches for convolutional modelling of such 
devices. First, a purely convolutional approach can be chosen 
for linear systems. However, real-world audio effect 
processors are rarely linear systems. Second, Volterra kernels 
can be used to describe and simulate a weakly non-linear 
system [24, 25, 26].  Third, this paper presented a hybrid 
approach that splits a system into its linear and non-linear 
components. The linear components are then reproduced with 
dynamic convolution, while the non-linear components are 
approximated algorithmically. This approach could be refined 
in several ways. For example, the system’s impulse response 
could be observed with different input signal levels. 
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